Blockchain and IoT examples

The Internet of Things is such a broad and confusing space, with so much potential impact in business, society and home life, that talking about it feels a bit like talking about the universe. After all, what isn’t a “thing” that can be connected to the Internet? When we’re referring to the Internet of Things, do we include our smartphones? Our cars? Our televisions? What about our satellites and our aeroplanes? Our 3d printers and our factory robots? And getting metaphysical on the issue, what about Facebook pages? Video games? Bank accounts? They’re things too, right? But to bring the discussion of the impact of the Internet of Things into the realm of practicality, most studies and businesses focus on gadgets, either big or small. The smartphone is so obviously a thing connected to the Internet that it is usually not featured in the sector studies, except as a conduit for information from other things. The same goes for computers and sensors. Those obviously-connected devices are what we embed in physical things to get them talking to us and to each other. So, when we refer to the “Internet of Things”, or IoT, we’re really talking about things connected via other things. Sensors, computers and phones talking to each other is the backbone of today’s development. But it’s not new and it’s not news. It’s what those sensors, computers and phones are talking about, what data they are transmitting and what objects they represent, that is of interest.

by Todd Quackenbush for Unsplash - blockchain and IoT
by Todd Quackenbush for Unsplash

For this discussion, I’m just focussing on physical gadgets not related to transport, the supply chain or to the energy sector (there’s so much going on there that we have the basis for a separate series of studies). While IoT is already a reality, its impact so far has been useful but fragmented, more an indication of what’s possible tomorrow than what we can change today. Blockchain technology is increasingly looking like a potential unifier for the different device-specific, manufacturer-specific and sector-specific networks currently in operation or under development. Yet its application is still fraught with obstacles and issues, most of which will be overcome with experimentation and creativity. Here I look at some of the more advanced projects participating in this journey – I fully expect that we’ll be hearing more from them in the months to come, as well as adding interesting newcomers to the list.

As with most blockchain activity these days, experimentation in the Internet of Things space is not limited to startups. In one of the first major papers on the subject, at the beginning of 2015 IBM revealed ADEPT (Autonomous Decentralized Peer-to-Peer Telemetry), a proof-of-concept of a universal IoT blockchain platform that combines P2P messaging, BitTorrent and Ethereum. Two interesting case studies were included: a washing machine that can manage its supply of detergent, self-diagnose and solve maintenance issues, and “negotiate” with other household devices the optimum time for an energy-consuming cycle run; and electronic billboards that manage, allocate and automatically charge for ad display. The proof-of-concept code was supposed to be shared on GitHub, although as far as I can tell it hasn’t yet, perhaps because the project leader left IBM at around the time of the paper release. IBM have certainly not been idle, though, and a few months ago revealed that they are working on combining the blockchain with Artificial Intelligence to manage IoT ownership, access and diagnostics. This is part of IBM’s commitment, announced in March 2015, to invest $3bn in the Internet of Things. Yes, that’s billion with a b. This should be fascinating.

One of the best-funded startups in the blockchain + IoT area is US-based Filament, which has received $7.35m in investment from VCs such as Bullpen, Pantera, Verizon, Crosslink, Samsung, Digital Currency Group and others. Its focus is long-range wireless networks, and its main product is the Tap, a device registered on the blockchain with environmental sensors that can integrate with other sensors, and which has a wireless range of over 15km that does not depend on wifi or cellular networks. These sensors help farmers to monitor soil quality, cities to control outdoor lighting, and vending machine operators to optimize inventory, among a host of other potential applications. While most uses at the moment do not need universal registry, the blockchain base will enable connectivity in the future, which will encourage the development of additional efficiencies and possibilities. Running on the bitcoin blockchain allows for micro-transactions, which will open up the project to a wide range of new business models. And if things are going to talk to and transact with each other, they’re going to need Filament’s blockchain-based help with decentralized identity creation for inanimate objects. The Patch, their other main product, is an embeddable version of the Tap that adds wireless connectivity to any hardware. Filament is one of the most advanced IoT and blockchain companies, in that it actually has paying clients and a seemingly viable business model: it owns the sensors, and charges for the configuration, the data, the maintenance and the updates.

IOTA approaches the issue from the other direction. Instead of focussing on the devices, it has created a cryptocurrency to facilitate micro-transactions between devices. Rather than a heavy blockchain, though, it runs on a lightweight “Tangle”, a “block-less” distributed ledger that makes it possible to transact without fees. Tangle doesn’t have miners that need incentivizing, but “verifiers” that are also users. They process transactions as they use the network, which allows for transactions at no cost, ideal for the high-frequency, low-value, light and constant transactions of the Internet of Things. Technically IOTA does not use a blockchain, but I include it here for its decentralized, trust-less approach to the exchange of value, and its innovative approach to the sticky problem of micro-transactions (still relatively expensive, even on the blockchain), both of which could put the goal of a viable and efficient Machine Economy within reach.

Chainofthings focusses on the security of the data collected and uploaded by the Internet of Things. Run as a consortium composed of several startups and established businesses active in the IoT and blockchain space, it supports and collates research and organizes events designed to promote solutions-based exploration. Participants and supporters include blockchains Ethereum, Lisk and Emercoin; IoT startups Filament and IOTA (mentioned above); blockchain businesses Skuchain and Everstore; bitcoin node hardware manufacturer Bitseed; solar power startups SolCrypto, SolarCoin and ElectriCChain; advisory businesses such as Zerado and Neuroware; and large international conglomerates such as electricity company RWE. Its first case study, revealed at a recent Chainofthings event in London, looked at the application of distributed ledgers to solar power generation, and the next one will focus on sensor mobility.

UniquID is a young project that was first presented at the Consensus conference in May 2016. Based in the US and in Italy, it allows users (still in beta) to create a private blockchain which acts like a sort of “wallet”, on which they can register their devices. All devices registered on that blockchain can communicate with each other, without the need for external authentication. Access to these “wallets” could be from a range of configured devices, which would give flexibility to the format and the deployment of these “local” IoT networks. Unlike other efforts in the sector, UniquID’s idea seems to be to maintain the separation of IoT networks, and it remains to be seen how this is better than a simpler database approach.

Riddle&Code is another young project in development, with an interesting twist. According to its website, the platform “connects blockchain technology to real world objects”, which is what most participants in the sector want to do. The twist is that it uses NFC technology that permits the secret exchange of data and of the cryptographic keys that determine who can access that data.

As you can see, the intersection of blockchain and the Internet of Things is attracting attention, but not yet at the scale the potential warrants, and not yet with a “success story” business model (Filament seems to be on the right track, but there is little public information, and it’s still early days). The ideal balance between hardware and software, centralization and decentralization, complexity and convenience will be difficult to find. But it will emerge as the sector gets more competition and as the businesses move along the timeline from idea to implementation to revenues. This progress is worth encouraging, as the end results will not only open up new potential Internet of Things business models. They will also teach us even more about the potential and actual real-world applications of blockchain technology and its derivatives, which will lead to more innovation and creativity. It won’t be easy – there are many conceptual issues revolving around identity and data that will need to be addressed – but the most important things in history never are.

(If I’ve gotten anything wrong on any of the businesses mentioned, please let me know! I don’t ever want to mis-represent a company or an individual, ever. A similar version of this post was published on LinkedIn. I twitter away at @NoelleInMadrid, come and say hi!)

Leave a Reply

Your email address will not be published. Required fields are marked *