Blockchain electricity

I’ve been doing some research recently into the role that blockchains could play in the management of supply chains. The fit seems obvious (one chain on top of another… geddit?), but it’s actually complex, and the potential impact is huge. In brief (and I’ll go into more detail in other posts), the blockchain could be used to track the progress of a good as it passes from one development stage to another. From design through to production through to shipping, with components’ information verified and embedded. Less bureaucracy, fewer middlemen, less chance of corruption, contamination or substitution. Greater transparency, lower costs. There’s a lot to talk about here.

But let’s step to one side for a moment and look at a supply chain that doesn’t move physical goods, or even digital goods. A supply chain that moves energy. The electricity grid. How can the blockchain help there?

From distributed generation to micro-supply, innovators both large and small are coming up with unusual ideas. Here are some examples:

RWE, a large German electricity producer, is working on a prototype (together with Ethereum Internet of Things specialist for an electric car charging station that communicates directly with your car. Your car downloads the electricity it needs, either at a plug-in station or while stationary over an induction point (such as at traffic lights), and pays exactly the right amount via its digital wallet on the blockchain. The contract is between the charging station and your car. Neither you nor the energy company need to get involved.  This system, if extended, would not only make it possible to keep your car charged in any country, since a contract with an electricity company is not needed. It also would make fleets of driverless cars more economically and logistically feasible, since responsibility for charging would fall to the car, not the owner.

Taking a huge distributed step forward, TransActive Grid (a joint venture between distributed tech company L03 Energy and Ethereum developer Consensys) can set up solar panels on your roof, and enable you to sell any excess electricity you generate to your neighbours through a “microgrid”. The aim isn’t to replace the big electricity companies, but to see if a peer-to-peer electricity network is technologically possible. At the moment the main obstacle is that these exchanges have to happen off the electricity grid, which puts physical barriers (distance) in the way of their potential spread. But if the exchange turns out to be practical, grid regulation could in the future allow adaptation of the existing electricity network. This experiment is already underway in Brooklyn, NY, and the first transaction took place successfully just a couple of weeks ago.

On the quirky end of the spectrum, SolarChange was created to reward generators of solar power, via the blockchain. For every 1Mw of green electricity produced, the producer is awarded 1 SolarCoin, which can be stored in a SolarCoin wallet and held for value appreciation, or converted into bitcoin (the current exchange rate is 0.00010001 BTC, or about 5 cents – a year ago it was a tenth of that).


Not as much for decentralized supply as for decentralized funding, South-Africa based Bankymoon – which develops bitcoin payment gateways for smart electricity meters – has set up Usizo, a crowdfunding platform for electricity supply. Schools are equipped with a smart meter, and donors are invited to contribute to the school’s electricity supply by sending bitcoin to the meter’s bitcoin address. Talk about a feel-good application.

Usizo - blockchain electricity

They are supported in this project by Vienna-based Grid Singularity, cofounded and led by some of Ethereum’s core team (and Bankymoon’s founder Lorien Gamaroff is a “Vision Partner”). Grid Singularity is developing a platform to use blockchain technology to connect power companies, and is exploring how to use the blockchain for smart grid management, energy trade verification and other applications. Their focus is use in developing countries, to help develop their solar energy deployment.

And as if to prove that things are warming up in the sector (there are so many opportunities for puns in this topic), just last week a potential new entrant emerged. Consensus 2016, a big bitcoin and blockchain conference organized by CoinDesk, was in full swing in New York. One of their features is a hackathon, in which ideas using the blockchain to improve lives compete for a $5,000 prize. Not a lot of money, true, but the PR isn’t bad. The winner this year is, drumroll, Decentralized Energy Utility, which aims to enable a network of smart meters and blockchain-based payments.

So, while the current electricity grid system is not about to be disrupted tomorrow, the talk about the blockchain disrupting the power supply seems to be passing from the theoretical to the practical. The potential is huge. Decentralized energy is more secure (less likelihood of power outages), involves less wastage (the power goes to where it’s needed), and once scale is reached, will save money (lower generation, distribution and maintenance costs). It also puts efficient electricity within reach of those without a bank account, even those without access to the power grid. Could we be witnessing the beginning of a fragmentation of the electricity market? How will this play out with the regulators? Could it be that the blockchain will reverse the centralization tendency of capitalism? With the stage set for the first act of a suspenseful disruption, the pre-show performance looks promising, and the cast of characters looks hopeful.

2 thoughts on “Blockchain electricity

  1. anyone interested in learning more about blockchains and solar electricity may be interested in joining the There are 14 projects involving IOT, Blockchain and Solar Electricity around the world.

    1. Thanks, Nick! I was reading about ElectriCChain yesterday. I’d like to write about it soon, and more about Solarcoin too – I’ll let you know beforehand!

      All the best, 🙂

Leave a Reply

Your email address will not be published. Required fields are marked *